Satellite Motion 1

Satellite Motion

An Earth satellite is simply a falling object
It is simply traveling with enough tangential velocity to fall around the Earth, rather than into it.

Mountain Cannon

$8000 \mathrm{~m} / \mathrm{s}$
A satellite close to the Earth has a tangential speed of $8 \mathrm{~km} / \mathrm{s}$. ($19,000 \mathrm{mi} / \mathrm{hr}$)

During each second, the satellite falls 5 m beneath each successive 8 km tangent.

"Falling Moon"

explanation of how satellite motion would work
apple falls to surface of Earth b/c gravity.....moon orbits b/c gravity

Tangential Velocity

too slow - F_{g} makes satellite fall into earth too fast - satellite goes into outer space

Unit: m/s

Circular Orbits

circular orbit - V_{t} matches available F_{g}
the speed of the satellite is constant

Satellite Motion 1

Elliptical Orbits

If the tangential speed of the satellite is greater than $8 \mathrm{~km} / \mathrm{s}$, the satellite will overshoot a circular path and follow an ovalshaped path or ellipse.

Escape Speed

Escape speed is the minimum initial speed an object must have in order to escape the pull of Earth's gravitational field.

Escape speed from Earth is $11.2 \mathrm{~km} / \mathrm{s}$. $\quad 11,200 \mathrm{~m} / \mathrm{s}$ ($25,300 \mathrm{mi} / \mathrm{hr}$.)

TV Satellite

7000 mph at about 22,200 miles above the Earth

http://science.nasa.gov/realtime/jtrack/3d/JTrack3D.html/
(a)

Assignments

- Begin Chapter 13 Homework \#1-4

